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Introduction

Our article builds on the concept of “personalized” medicine: adminis-
tering the right drug to the right patient with the right schedule. This
idea is generally understood with a static meaning and the techniques

used to design optimal protocols mostly involve a unique dimension.

Here, we allow our optimization program to deal with a huge dimension-
ality and we let it learn from past actions. We use a heuristic that is

well-known in Artificial Intelligence: the Monte-Carlo Tree Search.

We run an in-silico clinical trial, where we compare our optimal protocols
to the standard protocol (Maximum Tolerated Dose, MTD). Results are
twofold:

e efficacy is greatly improved: the tumor size at day 336 is divided by
more than 6;
e toxicity is not deteriorated: a smaller number of patients experience a

severe toxicity.

Method

We use a model of population Pharmacokinetics/Pharmacodynamics for
temozolomide to simulate an in silico clinical trial. For determining
optimal personalized protocols in a population of heterogeneous patients,
we define:
e a heuristic, which is a variation on Monte-Carlo Tree Search:

— highly flexible,

— requires a significant amount of work for " fine tuning”;
e an objective: minimize tumor size at day 336 (12 MTD cycles);
e a constraint: lower bound on ANC nadir;
e some information for Bayesian update:

— static: body surface area,

— dynamics: reaction to the treatment.
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Take-away results:

Conclusion

[0.00001—61.46]

Protocol Tumor mass (g)  Patients with severe toxicity
79.86
MTD 10.001—292.9] 10/192
OPP 12.63 3/192

What we are looking for:

combination, EPO:

e we are looking for partners to go beyond the Proof of Concept.

e we have a convincing Proof of Concept on retrospective data;

e our concept has been applied to other problems: immunotherapy, drug

App. 1: Model for temozolomide
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App. 2: Monte-Carlo Tree Search
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